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Abstract: The use of herbal food supplements, as a concentrate form of vegetable extracts, increased so
much over the past years to count them among the relevant sources of dietetic polyphenols.
Bud-derivatives are a category of botanicals perceived as a “new entry” in this sector since they are
still poorly studied. Due to the lack of a manufacturing process specification, very different products
can be found on the market in terms of their polyphenolic profile depending on the experimental
conditions of manufacturing. In this research two different manufacturing processes, using two
different protocols, and eight species (Carpinus betulus L., Cornus mas L., Ficus carica L., Fraxinus excelsior
L., Larix decidua Mill., Pinus montana Mill., Quercus petraea (Matt.) Liebl., Tilia tomentosa Moench),
commonly used to produce bud-derivatives, have been considered as a case study. An untargeted
spectroscopic fingerprint of the extracts, coupled to chemometrics, provide to be a useful tool to
identify these botanicals. The targeted phytochemical fingerprint by HPLC provided a screening of
the main bud-derivatives polyphenolic classes highlighting a high variability depending on both
method and protocol used. Nevertheless, ultrasonic extraction proved to be less sensitive to the
different extraction protocols than conventional maceration regarding the extract polyphenolic profile.

Keywords: bud-derivatives; botanicals; polyphenols; UV-Visible spectroscopic fingerprint; chemometrics;
targeted chromatographic fingerprint

1. Introduction

In recent decades, food supplements have an important impact on the consumers showing a
significant expectation for their health and well-being [1]. They are concentrated sources of nutrients
or bioactive compounds endowed with nutritional or physiological effects and, due to their presumed
health benefits, they can supplement the common diet [2,3].

In particular, the interest in herbal food supplements (botanicals) is exponentially grown and
consequently the relative market has increased in all the world [4]. Botanicals are become among the
most popular into the food supplements category, due to the general belief which “natural” is better,
healthier and safer than synthetic drugs, although this is not always true [4]. In Italy, more than 20%
of the Italian population is considered “regular” consumer of these herbal products, as highlighted
from the recent European PlantLibra (Plant Food Supplements: Levels of Intake, Benefit and Risk
Assessment) consumer survey [5]. The wide range of herbal food supplements on the market and the
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non-attendance of effective legislation to guarantee the safety and quality aspects make these products
vulnerable for fraud, falsification and adulteration [6,7].

Bud-derivatives (BDs) are a relatively new category of herbal food supplements and they
represent one of the supply chains investigated in the FINNOVER project (Innovative strategies for
the development of cross-border green supply chains), an European Interreg Alcotra Italy/France
project (2017–2020) whose aim is the green innovation of several agro-industrial chains [8]. BDs are
conventionally produced, according to the European Pharmacopoeia VIII edition [9], by cold maceration
of the fresh meristematic tissues of trees and herbaceous plants (i.e., buds and young sprouts) using as
extraction solvent mixtures of water, ethanol and glycerol [10,11]. These natural products are already
marketed, and a long history of use as dietary supplements for human well-being and health is reported
in traditional medicine. No health claims are yet approved by the European Food Safety Authority
(EFSA) and just for some of these botanicals pharmacognostic findings supported their use as adjuvants
in several diseases. In fact, some in-vitro/in-vivo biological studies for human and veterinary use
have been already reported in the literature. For examples, Allio et al. (2015) investigated whether
Tilia tomentosa bud extracts affect hippocampal Gamma-aminobutyric acid (GABA) ergic synapses [12].
In other studies, bud extracts from Salix caprea L. have been demonstrated to inhibit voltage gated calcium
channels and catecholamines secretion in mouse chromaffin cells [13]. Moreover, different patents have
also been registered on the veterinary use of bud-extracts (e.g., Composition of Salix caprea bud-extract
and its use in the treatment of animal endometritis, patent n. TO2015A000193) [14] and several studies
are carried out on several bud-derivative biological effects [15–17].

Although gemmotherapy has been used since ancient times because of the peculiar content of
buds in bio-active compounds, especially polyphenols, nowadays BDs are still a little studied “niche”
production [18,19]. The lack of detailed scientific information and a clear and unique regulation, as well
as for the category of herbal food supplements in overall [6,7,20], it makes these products high risk
and there is an increase request for efficient quality control to ensure the proper identification of the
botanical source and their content [21].

With regards to BDs, a first problem it is accidentally confusing the raw material: fresh buds must
be collected, generally from spontaneous grown, in a very limited period in the late winter and/or
in the early spring, corresponding to the annual germination of the plant [18]. During this period,
plants may not show their distinctive characteristics and sometimes the attribution of the botanical
species may be difficult for the collector. A second problem concerns the manufacturing process and
the extraction protocols whose parameters are not strictly defined, and production rules are often loose
and deficient [22–24].

Polyphenols play key roles in plant development processes and their synthesis increases when
plants are under conditions of abiotic stress, thus helping the plant to cope with environmental
constraints [25]. They form an integral part of the human diet and they are very abundant in
plant-based foods, such as fruits and vegetables, tea, wine, and coffee [26]. Their chemical structure is
based on at least one aromatic ring with one or more hydroxyl groups, which explains their known
antioxidant and anti-inflammatory properties [27].

In recent years, many health benefits of dietetic polyphenol supplementation have been
described in humans i.e., against aging and cardiovascular disease [28,29], to prevent obesity
and diabetes [30,31], to modulate human gut microbiota [32] and to improve the brain cognition
skills [33,34]. This knowledge guides the choice of consumers not only towards plant foods but also
towards herbal food supplements, whose polyphenol content is often even more concentrated and
responsible for their bioactivity [12,13]. Nevertheless, polyphenols content is strongly influenced by
the manufacturing methods whose parameters are often not strictly defined (e.g., solvent ratios in the
extraction mixtures, raw material/extraction mixture ratios, extraction time) and thus they could affect
the final compositions [35].

In previous articles, the polyphenolic pattern of some BDs prepared starting from different
botanical species have been studied [10,11,21,36].
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In this research, eight species spontaneously grown and commonly used to produce BDs, i.e.,
Carpinus betulus L., Cornus mas L., Ficus carica L., Fraxinus excelsior L., Larix decidua Mill., Pinus montana
Mill., Quercus petraea (Matt.) Liebl., Tilia tomentosa Moench, have been taken into account as case
study. Two different manufacturing methods, one conventional (maceration) and one innovative
(direct sonication), as well as two different extraction protocols have been taken into account and the
corresponding polyphenolic extracts’ profiles have been investigated.

Pulsed Ultrasound-Assisted Extraction (PUAE), according to the six principles of the green
extraction [37] and the twelve principles of green chemistry [38], has been employed as an innovative
technique to quickly produce BDs comparing to the long conventional maceration [39]. Even if,
the positive impacts of the ultrasound-assisted extraction, i.e., reduction of the extraction time,
diminution of solvent and energy used, improvement in yield and selectivity, high reproducibility,
intensification of diffusion and eliminating wastes, are known in the scientific literature [40–42],
this technique is still underused in this sector.

Moreover, two different BDs manufacturing protocols, which used different extraction mixture of
solvents and different solid/liquid ratio, have also been studied to evaluate both the proper identification
of the botanical species and the traceability of these vegetal products regardless of extraction method
and experimental conditions.

A strategy based on the untargeted UV-Visible fingerprinting coupled to chemometrics
(Principal Component Analysis—PCA) has been proposed for the screening of the polyphenolic BDs
profile in order to obtain a rapid control tool [43]. Finally, HPLC methods were used to obtain a targeted
chromatographic profile [7,44] of the main polyphenol classes (i.e., flavonols, benzoic acids, catechins,
cinnamic acids). Polyphenols are correlated with their potential health-promoting activity [45], even if
they are strongly influenced both by the methods and protocols used [35].

2. Materials and Methods

2.1. Raw Samples

Buds, belonging to eight different vegetable species (Carpinus betulus L., Cornus mas L., Ficus carica L.,
Fraxinus excelsior L., Larix decidua Mill., Pinus montana Mill., Quercus petraea (Matt.) Liebl., Tilia tomentosa
Moench) were collected from plants spontaneously grown in the Turin Province (Italy) and were
immediately authenticated by an agronomist. Sampling has been performed in two years (2018–2019),
from February to April, during the bud break (“balsamic period”).

Table 1 reports the geo-localization coordinates of the different collection sites and the scientific
naturalistic illustrations (specifically achieved during the Finnover project) of all the eight vegetable
species investigated.

2.2. Chemicals

MilliQ ultrapure water, obtained by means of a Millipore equipment (Bedford, MA, USA) was
used throughout. All chemicals employed for the extract preparations and for the subsequent analysis
were HPLC-grade. They were supplied by VWR International S.r.l (Milan, Italy) and Sigma-Aldrich
(St. Louis, MO, USA). Purity of all the used standards for HPLC analysis of BDs has been reported in
the Supplementary Materials (Table S1).
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Table 1. The collection sites, the corresponding geo-localization coordinates, and the scientific
naturalistic illustrations of the eight different bud species.

Vegetable
Species

Family
(Order) Collection Site Geo-Localization

Coordinates Illustrations

Carpinus betulus Betulacee
(Fagales)

Bricherasio
Prarostino

San Germano
Rostino

44.821, 7.285;
44.831, 7.272;
44.825, 7.275
44.913, 7.237
44.868, 7.253
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possible. The manufacturing was performed both in an Italian company (Geal Pharma Turin, Italy)
and by the Authors in the analytical laboratory of the University of Genoa (Department of Pharmacy).

The following two different preparation methods of BDs were investigated: the conventional cold
Maceration (M) [9], and a more rapid and innovative procedure by Ultrasounds (US) recently described
by the Authors [11]. Moreover, for both preparation methods two different extraction solvents and
different sample/solvent ratios were investigated too (“Protocol A” and “Protocol B”, see Figure 1),
in order to evaluate both the proper identification of the botanical species and the traceability of
the BDs independently from their manufacturing process (Table 2). Each extraction was performed
in duplicate.Foods 2020, 9, x FOR PEER REVIEW 5 of 23 
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namely M, and ultrasounds, namely US) have been used. Each method has been applied following two
different protocols (A and B).

2.3.1. Conventional Cold Maceration (M) as Traditional Method

BDs were prepared using a cold maceration by an Italian Company of botanicals (Geal Pharma,
Bricherasio, Turin) following two different experimental manufacturing protocols, reported in Table 2:

(A) A 21 days maceration of buds in glycerol/ethanol 96% (1/1 w/w) with a 1:20 bud/solvent ratio
(considering the dry weight) has been performed, according to the official method of glyceric
macerates reported in the European Pharmacopoeia VIII edition [9] (“M_A”).

(B) A 3 months maceration of buds in a mixture of water/glycerol/ethanol 96% (50/20/30 w/w/w) as
extraction solvent with a bud/solvent ratio variable (considering the fresh weight) depending on
the botanical species (see Table 2) has been used, according to the method optimized and used by
the Company to produce glyceric macerates (“M_B”).

In both methods, after the maceration step, the extracts, namely BDs, have been obtained by a
preliminary filtration, a manual pressing and a second filtration after two days of decanting. The so
obtained BDs were stored at 4 ◦C in the dark until their further analysis.



Foods 2020, 9, 1343 6 of 22

Table 2. BDs obtained starting from the eight vegetable species (raw materials). Two different methods
(cold maceration-M and Pulsed Ultrasound-Assisted Extraction US) and two different experimental
protocol (Protocol A and B) are taken into account.

Sample
Identification Code

Vegetable
Species

Extraction
Method

Experimental
Protocol

Bud/Solvent
Ratio

1 Cb_M_A Carpinus
betulus M Protocol A 1/20 DW

2 Cb_US_A Carpinus
betulus US Protocol A 1/20 DW

3 Cb_M_B Carpinus
betulus M Protocol B 1/15 FW

4 Cb_US_B Carpinus
betulus US Protocol B 1/15 FW

5 Cm_M_A Cornus mas M Protocol A 1/20 DW
6 Cm_US_A Cornus mas US Protocol A 1/20 DW
7 Cm_M_B Cornus mas M Protocol B 1/20 FW
8 Cm_US_B Cornus mas US Protocol B 1/20 FW
9 Fc_M_A Ficus carica M Protocol A 1/20 DW

10 Fc _US_A Ficus carica US Protocol A 1/20 DW
11 Fc _M_B Ficus carica M Protocol B 1/10 FW
12 Fc_US_B Ficus carica US Protocol B 1/10 FW

13 Fe_M_A Fraxinus
excelsior M Protocol A 1/20 DW

14 Fe_US_A Fraxinus
excelsior US Protocol A 1/20 DW

15 Fe_M_B Fraxinus
excelsior M Protocol B 1/10 FW

16 Fe_US_B Fraxinus
excelsior US Protocol B 1/10 FW

17 Ld_M_A Larix decidua M Protocol A 1/20 DW
18 Ld_US_A Larix decidua US Protocol A 1/20 DW
19 Ld_M_B Larix decidua M Protocol B 1/20 FW
20 Ld_US_B Larix decidua US Protocol B 1/20 FW
21 Pm_M_A Pinus montana M Protocol A 1/20 DW
22 Pm_US_A Pinus montana US Protocol A 1/20 DW
23 Pm_M_B Pinus montana M Protocol B 1/10 FW
24 Pm_US_B Pinus montana US Protocol B 1/10 FW

25 Qp_M_A Quercus
petraea M Protocol A 1/20 DW

26 Qp_US_B Quercus
petraea US Protocol A 1/20 DW

27 Qp_M_B Quercus
petraea M Protocol B 1/15 FW

28 Qp_US_B Quercus
petraea US Protocol B 1/15 FW

29 Tt_M_A Tilia tomentosa M Protocol A 1/20 DW
30 Tt_US_A Tilia tomentosa US Protocol A 1/20 DW
31 Tt_M_B Tilia tomentosa M Protocol B 1/15 FW
32 Tt_US_B Tilia tomentosa US Protocol B 1/15 FW

DW: dry weight; FW: fresh weight.

2.3.2. Green Extraction: Pulsed Ultrasound-Assisted Extraction (US) as Alternative Method

Fresh buds were finely ground by a Grindomix 200 M (Retsch, Haan, Germany) for 20 s at 5000 rpm,
and then sieved by a 150 µm sieve, in order to improve the efficiency of the following extraction step [46].
PUAE was performed directly by an Hielscher UP200St sonicator (Teltow, Germany) equipped with an
ultrasonic titanium sonotrode (7 mm of diameter), at a constant frequency of 26 kHz. The pulsed mode,
referring to an alternation of “on” time and “off” time of the sonicator, guarantees a lowering increase
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in temperature, which better preserve the phytocomplex, and greater energy savings compared to
continuous treatments [47]. The experimental sonication conditions (amplitude 30%, duty cycle 65%,
extraction time 20 min) were previously optimized by the Authors on the same raw materials [11].

The same two experimental extraction conditions described in the paragraph 2.3.1 (“Protocol
A” and “Protocol B”, see Figure 1) were employed (“US_A” and “US_B”, see Table 2). The extracts
obtained were filtered for Buchner (Whatman n. 1 paper), centrifuged at 3000 rpm for 10 min and then
stored at 4 ◦C in the dark until analysis.

2.4. Spectroscopic Analysis: UV-Visible Fingerprint

UV–Visible absorption spectra (200 nm–900 nm) were recorded by a spectrophotometer Agilent
Cary 100 (Varian Co., Santa Clara, CO, USA) with 0.5 nm resolution, using rectangular quartz cuvettes
with 1 cm path length. BDs, before the spectroscopic analysis, were suitably diluted in the corresponding
extraction solvent (glycerol/ethanol 1/1 w/w or water/glycerol/ethanol 50/20/30 w/w/w) depending
on the followed experimental protocol (“Protocol A” and “Protocol B”, respectively). Dilution was
necessary to avoid signal saturation but was subsequently considered in order to make a comparison
between the different spectra achieved. BDs spectra were acquired in duplicate and then averaged.
The collection was performed at room temperature (25 ± 1 ◦C), against a blank solution represented by
the corresponding extraction solvent.

2.5. HPLC Analysis

In this study, effective HPLC–DAD methods were used for fingerprint analysis and phytochemical
identification of samples. Four polyphenolic classes were considered: benzoic acids (ellagic and gallic
acids), catechins ((+)catechin and (-)epicatechin), cinnamic acids (caffeic, chlorogenic, coumaric,
and ferulic acids), and flavonols (hyperoside, isoquercitrin, quercetin, quercitrin, and rutin).
Total bioactive compound content (TBCC) was determined as the sum of the most important bioactive
compounds with positive effects on human organism (“multimarker approach”) [48].

The external standard method was used for quantitative determination of bioactive compounds.
Stock solutions of cinnamic acids and flavonols with a concentration of 1.0 mg·mL−1 were prepared
in methanol: five calibration standards were prepared by dilution with methanol; stock solutions of
benzoic acids and catechins with a concentration of 1.0 mg·mL−1 were prepared in 95% methanol and
5% water. In this case, five calibration standards were prepared by dilution with 50% methanol–water.

An Agilent 1200 High-Performance Liquid Chromatograph coupled to an Agilent UV-Vis diode
array detector (Agilent Technologies, Santa Clara, CA, USA) was used for the chromatographic analysis.
Four chromatographic methods were used to separate the bioactive molecules on a Kinetex C18 column
(4.6 × 150 mm, 5 µm, Phenomenex, Torrance, CA, USA). Several mobile phases were used for bioactive
compound identification and UV spectra were recorded at different wavelengths, based on HPLC
methods, previously tested and validated [10,40], with some modifications: (i) a solution of 10 mM
KH2PO4/H3PO4 (A) and acetonitrile (B) with a flow rate of 1.5 mL·min−1 (method α-analysis of
cinnamic acids and flavonols, gradient analysis: 5% B to 21% B in 17 min + 21% B in 3 min + 2 min of
conditioning time); (ii) a solution (A) of methanol/water/formic acid (5:95:0.1 v/v/v) and a mix (B) of
methanol/formic acid (100:0.1 v/v) with a flow rate of 0.6 mL·min−1 (method β-analysis of benzoic acids
and catechins, gradient analysis: 3% B to 85% B in 22 min + 85% B in 1 min + 2 min of conditioning
time). UV spectra were recorded at 330 nm (A); 280 nm (B).

Biomarkers were selected for their demonstrated positive healthy properties and antioxidant
capacity by literature in relation to the use of this plant-derived products. All single compounds were
identified in samples by comparison and combination of their retention times and UV spectra with
those of authentic standards in the same chromatographic conditions. Each sample was analyzed in
triplicate and results were reported as mean value ± standard deviation to assess the repeatability of
the employed methods.



Foods 2020, 9, 1343 8 of 22

2.6. Data Analysis

2.6.1. Chemometric Analysis

Multivariate data analysis has been performed by CAT (Chemometric Agile Tool) software,
one advanced chemometric multivariate analysis tool based on R, developed by the Chemistry
Group of the Italian Chemical Society [49].

PCA was applied as common multivariate statistical method of unsupervised pattern recognition.
Its aim is extracting important information from the data and decreasing the high-dimensional dataset
volume by maintaining the important information [50,51].

2.6.2. Data Matrices Organization

A data matrix A32,601 consisting of 32 rows (corresponding to the BDs analyzed, 4 samples for
each of the eight botanical species investigated) and 601 columns (the absorbance values in the range of
200–500 nm of the UV-Visible spectra, with 0.5 nm of resolution) was prepared and further analyzed by
PCA. Standard normal variate (SNV) transform and column autoscaling were previously performed on
the spectral data to remove multiplicative effects of scattering and to scale the data, respectively [52].

Available sample were divided in two different subsets: a calibration (or training) set and a
test (or evaluation) set in order to build and validate the statistical model, respectively [53]. For a
reliable validation strategy, it is important that data used as test set were not used to build the
model in order to avoid the overestimations of the prediction ability [53]. 32 samples, previously
reported in Table 2, were selected for the construction and identification of the model (Calibration
set). The representative calibration data set consisted of 4 extracts (M_A, M_B, US_A, US_B) for each
botanical species investigated (Carpinus betulus L., Cornus mas L., Ficus carica L., Fraxinus excelsior
L., Larix decidua Mill., Pinus montana Mill., Quercus petraea (Matt.) Liebl., Tilia tomentosa Moench).
Furthermore 16 BDs, obtained both by conventional maceration and ultrasound extraction respectively
from the same eight vegetal species, were randomly selected and used as an independent set to test the
model and assess its validity (Test set, Table 3).

Table 3. External test set. 16 BDs obtained starting from the eight vegetable species using two
different methods (cold maceration M and Pulsed Ultrasound-Assisted Extraction US) and two
different experimental protocol (Protocol A and B) are taken into account as independent set to test the
statistical model.

Sample
Identification Code Vegetable Species Extraction

Method Experimental Protocol

1 Cb_TS Carpinus betulus US Protocol A
2 Cb_TS2 Carpinus betulus US Protocol B
3 Cm_TS Cornus mas US Protocol A
4 Cm_TS2 Cornus mas US Protocol B
5 Fc_TS Ficus carica US Protocol A
6 Fc _TS2 Ficus carica US Protocol B
7 Fe_TS Fraxinus excelsior M Protocol A
8 Fe_TS2 Fraxinus excelsior US Protocol A
9 Ld_TS Larix decidua US Protocol A
10 Ld_TS2 Larix decidua US Protocol B
11 Pm_TS Pinus montana M Protocol A
12 Pm_TS2 Pinus montana US Protocol A
13 Qp_TS Quercus petraea M Protocol A
14 Qp_TS2 Quercus petraea US Protocol A
15 Tt_TS Tilia tomentosa US Protocol A
16 Tt_TS2 Tilia tomentosa US Protocol B
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All the pre-treated UV-Visible absorption spectra, in the range 200–500 nm, are reported in Figure 2.
For each species, the four averaged spectral profiles corresponding to the Calibration set (Table 2) are
highlighted in grey while in red have been reported the Test set samples (TS/TS2) belonging to the
same class.Foods 2020, 9, x FOR PEER REVIEW 9 of 23 
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Then, a data matrix B32,620 consisting of 32 rows and 620 columns was prepared and analogously
analyzed by PCA. B32,620 rows correspond to the 32 BDs analyzed (Calibration set), and columns
are the absorbance values of the UV-Visible spectra after SNV in the range 200–500 nm coupled to
the chromatographic quantifications by HPLC (4 polyphenolic classes and 13 bioactive compounds).
The data set was previously scaled by using a block scaling procedure [54], with the aim to give to
the spectroscopic and chromatographic variables a comparable influence in the data analysis. In fact,
this pretreatment allows to divide variables in different blocks whose values will be scaled to attain
the same block-variance after pretreatment. Moreover, the variables belonging to the same block are
equally weighted.

3. Results and Discussion

The quality control of vegetal material is critical both if the botanical product is to be used as a
drug or as an herbal food supplement. For consumer safety and the protection of who operate in this
industrial field, quality control should be applied throughout the different processing steps, from the
raw material to the final product. Scientific-naturalistic illustrations of the most common buds used in
BDs production (Table 1) have been realized within the Finnover project by an expert botanical graphic
designer, in order to provide a useful first tool for the operators in the BDs manufacturing. In fact,
this peculiar raw material is generally spontaneously collected and mistakes in the attribution of some
botanical species may be possible. For this, bud illustrations could represent a preliminary control of
these vegetable materials after their collection in the point of view of a controlled manufacturing chain
of BDs.

Moreover, a strategy based on the untargeted UV-Visible fingerprinting coupled to chemometrics
allows rapid screening of the polyphenolic BDs profile to obtain a preliminary control tool to identify
the botanical species.

3.1. Bud-Derivatives Identification: UV-Visible Fingerprint

Figure 2 show the UV–Visible spectral profiles, after SNV pretreatment of the data, recorded
for the eight vegetable species investigated: Carpinus betulus L., Cornus mas L., Ficus carica L.,
Fraxinus excelsior L., Larix decidua Mill., Pinus montana Mill., Quercus petraea (Matt.) Liebl., Tilia tomentosa
Moench. The extracts were obtained by the conventional maceration and the innovative green
extraction (M or US) respectively, using the two experimental protocols (A or B) as described in detail
in Table 2. Ultrasounds represent one of the innovative processing techniques of officinal plants [39].
In fact, several companies already exploit innovative applications of ultrasound to obtain liquid foods,
beverages, and alcoholic drinks [55,56]. Previously, the Authors described PUAE as an alternative
time-saving method to the conventional maceration for the extraction of the polyphenolic fraction from
buds [11]. Particularly, PUAE on a lab pilot reactor demonstrated to be an excellent approach for a
rapid (20 min vs. 21 days or 3 months of maceration, depending on the Protocol applied) and efficient
extraction of phenolic compounds.

Looking at Figure 2, the spectra of the different vegetable species are quite different, highlighting
as the pattern of absorbances in the UV–Visible region is strictly connected with the botanical origin of
the plants. On the contrary, for each botanical species the spectral differences due to the extraction
method (M or US) and to the extraction solvent (Protocol A or B), are minimal. The 501–900 nm interval
has been preliminarily removed because there were none interesting absorptions in this spectral region
at the assayed concentrations.

PCA, an unsupervised pattern recognition technique [50,51], was applied in order to explore and
to analyze the data set using a multivariate approach since the analytical information contained in each
spectrum was considered as a multivariate fingerprint. Particularly, the data matrix A32,601, whose rows
are the extracts (Calibration set) and the columns are the absorbances recorded in the spectral range
200–500 nm, was considered. PCA was performed on the pretreated and autoscaled data matrix.
The first two principal components (PCs) of the data set (A32,601), which together explained the 77.9% of
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the total information of the data set since they visualize almost the 80% of the total variance, were firstly
taken into account. Figure 3a,b shows the PCA score plots on the 1st–2nd principal components
(PC1-PC2) obtained from the above-mentioned data matrix. In Figure 3a the extracts are categorized
according to the vegetable species and each one is visualized with a different color (Carpinus betulus L.:
black, Cornus mas L.: red, Ficus carica L: green., Fraxinus excelsior L.: blue, Larix decidua Mill.: brown,
Pinus montana Mill.: light blue, Quercus petraea (Matt.) Liebl.: orange, Tilia tomentosa Moench: pink).
In Figure 3b, for each vegetable class all the extracts belonging to the calibration set were indicated with
their identification code (see Table 2). PC1, the direction of maximum variance which explains almost
the 60% of the total information, allows good discrimination between the botanical class regardless
of the extraction method (M or US) and the experimental preparation protocol (A or B). Particularly,
the Fraxinus class (blue, lowest scores on PC1) separates from Ficus (green) and Pinus (light blue)
which have higher scores on PC1. PC2, which explains the 21.1% of the remaining variance, allows to
mainly separate Larix class (brown, highest scores on PC2) from Quercus (orange) and Carpinus (black,
lowest scores on PC2).

Figure 3c,d show the PCA score plots on the PC1-PC3, which explain together the 69.3% of the total
variance of the data set. A good separation among the above cited botanical classes is also highlighted
except for Larix and Carpinus ones. In fact, these latter separate on PC2 (Figure 3a,b) and since PCs are
orthogonal, they are uncorrelated and no duplicate information are shown in their plots [50].

In Figure 3e,f, the projections of the external test set (red samples) were reported on the PC1-PC2
and PC1-PC3 score plots respectively, showing a good correspondence with the calibration set for each
botanical species.

The spectral variables having greater importance (loading values) on the first three PCs are
represented by spectral areas near the following absorbances (in ascending order): 200 nm, 212 nm,
240 nm, 275 nm, 310 nm, 360 nm, 420 nm, as highlighted in the Loading plot on PC1-PC2-PC3 (Figure 4).

Several of them could be related to some secondary metabolites largely distributed in plant
material (even in buds) such as tannins, whose structural variability depends on the vegetal species and
even among organs of the same plant species [57]. The chemotaxonomic values of tannins have been
recognized in the literature for several botanical species [58,59] and, the distribution of hydrolysable
tannins has been used as chemotaxonomic markers by several authors [60].

It is well known that the different classes of tannins present characteristic absorption bands
in the UV spectral region. Particularly as far as hydrolysable tannins are concerned, gallotannins
show two characteristic absorption maximums, λ max around 212 nm and λ max around 275 nm,
with an inflection point (λ min) around 242 nm; ellagitannins present strong absorption near 200 nm
and a shoulder around 277 nm and another absorption near 360 nm. Instead condensed tannins
(or proanthocyanidins), chemically defined as flavonoid polymers in which the phenolic hydroxyls are
partially or totally esterified with gallic acid, present an absorption around 200 nm, a λ min between
258–259 nm and λ max between 279–281 nm [57]. Nevertheless, also other polyphenols, such as
hydroxycinnamic acids and flavonoids, could contribute to the UV-Visible fingerprints, even if some of
them are more ubiquitarians and lesser species-specific [61,62]. Furthermore, as far as flavonoids are
concerned, it is important to underline that their absorptions in the Visible are almost negligible at the
measured concentrations, which are instead useful to avoid saturation of the UV region.

The fingerprint UV-Visible, at least in a preliminary screening step, seems to discriminate the
peculiar polyphenols composition of BDs and could be a simple and quick method to confirm the
proper identification of the botanical source after the botanic check by a professional botanist.
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Figure 3. The scores plots of the UV–Visible absorbances data matrix A32,601. Each vegetable species
is reported with a different color (Carpinus betulus L.: black, Cornus mas L.: red, Ficus carica L: green.,
Fraxinus excelsior L.: blue, Larix decidua Mill.: brown, Pinus montana Mill.: light blue, Quercus petraea
(Matt.) Liebl.: orange, Tilia tomentosa Moench: pink). (a) PC1-PC2 score plot with BDs categorized
according to the vegetable species; (b) PC1-PC2 score plot with BDs categorized according to their
identification code (Table 2); (c) PC1-PC3 score plot with BDs categorized according to the vegetable
species; (d) PC1-PC3 score plot with BDs categorized according to their identification code (Table 2);
(e) PC1-PC2 score plot obtained projecting the external test set samples (highlighted in red); (f) PC1-PC3
score plot obtained projecting the external test set samples (highlighted in red).
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Figure 5 shows the PCA plots of the data matrix B32,620 on PC1-PC2, which together explained the
76.2% of the total variance.
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Figure 5. The PC1–PC2 plots of the UV–Visible absorbances coupled to the HPLC data (data matrix
B32,620): (a) Score plot; (b) Biplot.

PCA was performed on the pretreated and autoscaled data matrix, after the block scaling treatment
in order to consider in the data analysis the same importance for the spectroscopic and chromatographic
variables [63]. The PC1-PC2 score plot (Figure 5a) highlights a good separation between the vegetal
species. Particularly PC1, which represents the direction of maximum variance explaining the 55.4% of
the total information, allows good discrimination between Fraxinus class (blue, highest scores on PC1),
Ficus (green) and Pinus (light blue) classes, which have lowest scores on this PC. As highlighted in
the Biplot (Figure 5b) the variables having greater importance (loading value) on this separation are
represented by total cinnamic acids, caffeic acid, coumaric acid and hyperoside content which are high
in Fraxinus species and very low in Pinus one (as reported in Table 4). Instead PC2, which explains the
20.7% of the remaining information, allows mainly to separate Carpinus (black) and Cornus (red) classes
from all the other ones. These species result particularly rich in tannins (catechins and benzoic acids).
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Table 4. Bioactive classes and total phenolics in the analyzed samples.

Cinnamic Acids Flavonols Benzoic Acids Catechins Total Phenolics

Sample ID Mean Value SD Mean Value SD Mean Value SD Mean Value SD Mean Value SD

(mg/100 gFW **) (mg/100 gFW **) (mg/100 gFW **) (mg/100 gFW **) (mg/100 gFW **)

Tt_M_A 5.30 0.73 51.64 2.66 22.98 0.79 52.17 1.46 132.09 5.64
Tt_M_B 23.87 1.06 90.79 5.02 6.62 1.04 50.68 1.03 171.97 8.16

Tt_US_A 5.33 1.39 71.26 5.92 132.56 1.68 156.46 1.78 365.61 10.77
Tt_US_B 12.43 5.20 100.23 14.84 96.28 8.41 81.15 10.16 290.10 38.61

Pm_M_A n.d. / 31.13 1.45 n.d. / 171.38 1.65 202.51 3.10
Pm_M_B n.d. / n.d. / n.d. / 49.36 2.29 49.36 2.29

Pm_US_A n.d. / 31.36 3.86 3.67 1.56 378.90 2.54 413.93 7.96
Pm_US_B n.d. / 38.74 4.35 n.d. / 325.88 4.77 364.62 9.12

Ld_M_A n.d. / 275.15 0.91 97.07 0.31 112.09 0.67 484.31 1.88
Ld_M_B n.d. / 151.57 2.23 137.23 0.88 70.90 2.62 359.70 5.72

Ld_US_A 2.40 1.02 810.86 3.32 190.25 0.95 152.12 2.12 1155.63 7.42
Ld_US_B n.d. / 941.62 13.22 219.28 3.66 127.08 7.33 1287.98 24.21

Fe_M_A 829.03 2.26 499.08 2.52 214.49 0.69 328.25 1.68 1870.85 7.15
Fe_M_B 119.44 0.98 223.61 3.43 40.81 1.25 98.75 2.52 482.61 8.18

Fe_US_A 151.00 2.32 378.93 4.62 115.82 0.93 225.26 2.21 871.01 10.07
Fe_US_B 113.53 6.70 551.07 10.06 77.40 2.30 215.96 5.28 957.96 24.34

Cm_M_A 23.97 0.40 1055.03 1.87 577.48 0.37 104.70 0.53 1761.19 3.18
Cm_M_B 24.59 1.55 310.99 2.06 541.34 2.35 1161.65 2.48 2038.58 8.45

Cm_US_A 14.87 1.04 672.04 3.57 276.38 1.33 98.83 1.21 1062.12 7.15
Cm_US_B n.d. / 784.79 12.98 329.55 2.85 167.03 4.67 1281.37 20.50

Cb_M_A 47.04 0.83 442.45 2.04 286.40 1.25 523.93 1.14 1299.83 5.26
Cb_M_B n.d. / 203.20 1.18 418.85 2.56 248.73 2.73 870.78 6.47

Cb_US_A n.d. / 230.16 2.82 80.56 1.04 297.57 1.07 608.29 4.92
Cb_US_B n.d. / 198.98 5.89 206.42 4.05 227.60 3.00 633.00 12.95

Fc_M_A 62.21 0.84 287.89 4.35 67.29 0.89 267.35 2.16 684.74 8.25
Fc_M_B n.d. / 123.28 3.65 45.86 1.08 68.42 2.11 237.57 6.83

Fc_US_A 6.49 2.62 116.68 4.31 26.33 1.18 138.27 2.64 287.77 10.76
Fc_US_B 10.77 5.54 155.02 11.39 52.18 3.49 183.91 7.34 401.88 27.76

Qp_M_A 5.08 0.65 223.63 1.97 283.59 1.28 294.75 0.85 807.06 4.75
Qp_M_B n.d. / 59.40 2.75 84.02 2.16 109.81 2.18 253.23 7.09

Qp_US_A 1.76 1.29 55.98 4.96 223.32 2.35 253.81 2.23 534.87 10.83
Qp_US_B n.d. / 72.09 8.50 58.43 5.70 161.81 4.89 292.32 19.08

SD: standard deviation; ** FW: fresh weight

In the Supplementary materials an example (Larix decidua) of chromatographic pattern was
reported. As shown in Figure 5, the addition of chromatographic variables does not greatly improve
the taxonomic separation previously obtained by the only UV-Visible fingerprint (Figure 3). However,
these results show that the main polyphenols evaluated could be useful markers for identifying the
botanical species regardless of the extraction method and the experimental preparation protocol.

3.3. Phenolic Composition of BDs

In this study, the health-promoting compounds were grouped into four different polyphenolic
classes in order to assess the contribution of each class to the phytocomplex composition of buds
belonging to the eight different species: cinnamic acids (as sum of caffeic acid, chlorogenic acid,
coumaric acid, ferulic acid), flavonols (as sum of hyperoside, isoquercitrin, quercetin, quercitrin
and rutin), benzoic acids (ellagic and gallic acids) and catechins ((+)catechin and (-)epicatechin).
The identification and quantification of each single bioactive compound, expressed in mg/100 g FW,
is reported in the Supplementary Materials (Table S2). For a better data visualization, Figure 6 shows the
radar plot, made considering for each botanical species the mean values obtained from the 4 different
extracts (M_A, M_B, US_A, US_B) for each marker compound quantified.
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Figure 6. The mean content of each phenolic marker (caffeic acid, chlorogenic acid, coumaric acid, ferulic
acid, hyperoside, isoquercitrin, quercetin, quercitrin and rutin, ellagic acid, gallic acid, (+)catechin and
(-)epicatechin) for the eight botanical species investigated.

Several markers of cinnamic acids were considered but not detected in all the extracts.
Fraxinus excelsior BDs showed the highest content in cinnamic acids (ranged from 113.53 ± 6.70
to 829.03 ± 2.26 mg/100 g FW), and as shown in Table S2, ferulic and chlorogenic acids were the
most abundant. Cornus mas and Tilia tomentosa species showed very low amounts of ferulic acid
(respectively 12.14 and 11.73 mg/100 g FW), while in the other species it was not detected. In recent
years, several physiological functions of ferulic acid have been demonstrated [64]. Particularly,
its free radical scavenging activity and its cholesterol-lowering activity, together with the low toxicity,
suggested its chemo preventive effects on heart diseases [65]. Chlorogenic acid is also involved
in beneficial effects on human health due to its anti-inflammatory, antioxidative, anti-aging and
anticancer activities [66]. Chlorogenic acid was detected only in Fraxinus excelsior BDs (ranges from
43.88 to 489.94 mg/100 gFW), in all the other species it was not detectable. Li et al. 2013 reported
that chlorogenic acid and flavonols may be considered the main phenolic compounds responsible
for in vitro anti-cancer property (i.e., against breast, colon, liver and lung cancer) [66]. As regards
the total flavonol content, it was highly variable among species. The highest content was quantified
in Cornus mas species (mean value: 705.71 mg/100 g FW) while the lowest value in Pinus montana
(mean value: 25.31 mg/100 g FW). As highlighted in Figure 6, quercetin represented the phenolic
marker of BDs belonged to Larix decidua species (in orange), while hyperoside was more abundant in
Fraxinus excelsior ones (in light blue).

Benzoic acids are known to be very important in the human diet because of their relation
to many biological and functional activities including antioxidative, anti-inflammatory, anticancer
and antihepatotoxic properties [67]. Gallic acid, due to its antioxidant activity, has been shown
to be effective against oxidative stress (OS), and many other properties have been reported
(i.e., anti-mutagenic, anti-carcinogenic, antiviral, antibacterial, anti-inflammatory, antithrombotic
and anti-atherosclerotic activities) [68]. A multi-target activity of ellagic acid, mainly ascribed to
its antioxidant property and free radical trapping ability, has been reported too. In particular
anti-angiogenic, anti-atherogenic, anti-carcinogenic, anti-obesity, anti-inflammatory, antioxidant,
anti-thrombotic and anti-neurodegenerative properties have been demonstrated [69]. Ellagic acid was
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very abundant in almost all the described species (Table S2) while gallic acid was not detectable in
Ficus carica, Fraxinus excelsior, Larix decidua and Pinus montana species. The highest content in ellagic
acid was identified in Cornus mas extracts, followed by Larix decidua and Quercus petraea BDs (Figure 6,
in red).

Catechins have important effects on human health thanks to its antioxidant, anti-inflammatory,
antidiabetic, and antimicrobial properties [67]. The intake of foods and dietary supplements rich
in catechins could have an important role in the prevention of various diseases (i.e., cardiovascular
diseases), inhibition of lipid peroxidation, improvement of blood flow, elimination of several toxins
and inhibition of human cancer cell line proliferation and cyclooxygenase enzymes [70]. All the vegetal
species considered in this research were a good source of catechins (catechin and epicatechin) as shown
in Table 3 and Table S2. Particularly, as highlighted in Figure 6, catechin represented the phenolic
marker of Pinus montana BDs (in violet), while epicatechin was more abundant in Carpinu betulus and
Quercus petraea extracts (in light green).

All BDs analyzed showed a good content of phenolics although there was a high variability both
between the different vegetal species and between the extracts obtained by the different manufacturing
method and experimental conditions starting from the same botanical species. Figure 7 showed the
radar plots of each botanical species in order to better highlight the phenolic composition of the 4
different extracts (M_A, M_B, US_A, US_B).

As showed in Figure 7, the manufacturing methods (conventional maceration or sonication) and
the experimental conditions used for the preparation of BDs (i.e., extraction solvent, extraction time,
solid/ solvent ratio, extraction time) strongly influenced the phenolic extraction yield despite having
removed the variability of the raw material (same batch of buds for each vegetal species). Generally
US_A (green line) and US_B (red line) appears more similar in terms of phenolic composition respect
to M extracts (M_A and M_B), except for some species, such as Pinus montana and Larix decidua,
in which there is a greater homogeneity in the polyphenolic profile of the final products. In almost
all species, the M_B extract (yellow line) is the most different from the others. In example, the M_B
extract of Cornus mas was rich in catechin which was not detected in extracts obtained by different
extraction conditions (M_A, US_A, US_B). Analogously, rutin represents a phenolic marker of the
M_B extract of Fraxinus excelsior, while it was poorly detectable in the other extracts of the same
species. Surely Protocol A, according to the European Pharmacopoeia, provided a higher alcoholic
concentration of the extraction solvent than protocol B and it is known that a higher solvent polarity
allows a higher phenolic extraction from plant materials [71]. Moreover, Protocol A used an higher
solid/solvent ratio because it is evaluated on the dry weight of the raw material while following
the industrial Protocol (B), the fresh weight of buds was taken into account. Regarding the effect
of ultrasounds, the implosion of cavitation bubbles on the material surface results in micro-jetting
which generates several effects such as surface peeling, detexturation, erosion and cell breakdown [40].
Probably, the destruction of vegetal cells allowed to increase the extraction yield making up for the
lower alcohol content of protocol B.

Due to the lack of a single regulation and an unique preparation protocol for these botanicals,
very different products can be found on the market in terms of their polyphenolic fraction depending
on both the raw materials (i.e., taking into account their specific agro-environmental and biological
traits) and on the experimental conditions of manufacturing (method of preparation, extraction solvent,
solid/solvent ratio, extraction time).
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4. Conclusions

Although BDs have been widely used in traditional medicine because of the peculiar content of
buds in phenolic compounds, nowadays they are a category of botanicals still poorly studied. The lack
of detailed scientific information and a clear and unique regulation, it makes these products high risk
and vulnerable for accidental mistakes in the attribution of the botanical species, but also frauds and
adulterations. Moreover, the polyphenols content of BDs is strongly influenced by the manufacturing
processes whose parameters are often not strictly defined (e.g., solvent ratios in the extraction mixtures,
raw material/extraction mixture ratios, extraction time) and thus they affect their final compositions.

This research, within the Finnover project, aims to answer to the growing demand for efficient
quality control in the BDs field to guarantee the proper attribution of the botanical source and
their content. Moreover, a manufacturing process specification should be advisable to monitor the
bioactive contents.

UV-Visible spectroscopy and HPLC-DAD analysis have been employed to obtain an untargeted
and a targeted phytochemical fingerprint of BDs, respectively. UV-Visible coupled with an appropriate
chemometric data processing is a simple, rapid and low-cost technique proved to be very useful to
identify the botanical source regardless the manufacturing method and the experimental conditions
used. Moreover, the targeted phytochemical fingerprint by HPLC-DAD allowed to obtain a detailed
screening of the BDs polyphenolic profile which highlighted an high variability due to the different
vegetal species and to the manufacturing method and protocol. The ultrasonic extraction of buds
compared to conventional maceration proved less sensitive to the different extraction protocols.

The proposed strategy offers to those operating in this industrial sector an untargeted method
for the identification of the bud’s botanical species and a green extraction strategy (PUAE) which is
more robust with respect to the different extractive protocols that can be used. The same approach,
described for BDs, could be analogously applied to other botanical productions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/10/1343/s1,
Figure S1: Larix decidua chromatographic pattern. Table S1: Purity of all the used standards for HPLC analysis of
BDs. Table S2: Single phenolic compound fingerprint of BDs.
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